Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(16): 3881-3907, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572601

RESUMO

Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.


Assuntos
Raios Infravermelhos , Nanopartículas , Neoplasias , Água , Humanos , Nanopartículas/química , Catálise , Água/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Processos Fotoquímicos
2.
Biomater Adv ; 158: 213778, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325029

RESUMO

Combining chemodynamic therapy (CDT) with photothermal therapy (PTT) has developed as a promising approach for cancer treatment, as it enhances therapeutic efficiency through redox reactions and external laser induction. In this study, we designed metal organic framework (MOF) -derived Cu5Zn8/HPCNC through a carbonization process and decorated them with gold nanoparticles (Au@Cu5Zn8/HPCNC). The resulting nanoparticles were employed as a photothermal agent and Fenton catalyst. The Fenton reaction facilitated the conversation of Cu2+ to Cu+ through reaction with local H2O2, generating reactive hydroxyl radicals (·OH) with potent cytotoxic effects. To enhance the Fenton-like reaction and achieve combined therapy, laser irradiation of the Au@Cu5Zn8/HPCNC induced efficient photothermal therapy by generating localized heat. With a significantly increased absorption of Au@Cu5Zn8/HPCNC at 808 nm, the photothermal efficiency was determined to be 57.45 %. Additionally, Au@Cu5Zn8/HPCNC demonstrated potential as a contrast agent for magnetic resonance imaging (MRI) of cancers. Furthermore, the synergistic combination of PTT and CDT significantly inhibited tumor growth. This integrated approach of PTT and CDT holds great promise for cancer therapy, offering enhanced CDT and modulation of the tumor microenvironment (TME), and opening new avenues in the fight against cancer.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro , Nanopartículas Metálicas/uso terapêutico , Terapia Fototérmica , Porosidade , Microambiente Tumoral , Carbono , Imageamento por Ressonância Magnética , Zinco
3.
Biomater Adv ; 157: 213724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134729

RESUMO

Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.


Assuntos
Hipertermia Induzida , Nanoestruturas , Fototerapia , Microambiente Tumoral , Fenômenos Magnéticos
4.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570490

RESUMO

Water pollution has emerged as a major global environmental crisis due to the massive contamination of water resources by the textile dyeing industry, organic waste, and agricultural residue. Since water is fundamental to life, this grave disregard puts lives at risk, making the protection of water resources a serious issue today. Recent research has shown great interest in improving the photocatalytic performance of graphitic carbon nitride (g-C3N4) for wastewater treatment. However, the photocatalytic removal activity of pure g-C3N4 is poor, owing to its minimal surface area, fast recombination of photo-generated electron-hole pairs, and poor light absorption. Recently, titanate perovskites (TNPs) have attracted significant attention in both environmental remediation and energy conversion due to their exceptional structural, optical, physiochemical, electrical, and thermal properties. Accordingly, TNPs can initiate a variety of surface catalytic reactions and are regarded as an emerging category of photocatalysts for sustainability and energy-related industries when exposed to illumination. Therefore, in this review article, we critically discuss the recent developments of extensively developed g-C3N4/TNPs that demonstrate photocatalytic applications for wastewater treatment. The different synthetic approaches and the chemical composition of g-C3N4/TNP composites are presented. Additionally, this review highlights the global research trends related to these materials. Furthermore, this review provides insight into the various photocatalytic mechanisms, including their potential impact and significance. Also, the challenges faced by such materials and their future scope are discussed.

5.
ACS Appl Mater Interfaces ; 15(28): 33335-33347, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403930

RESUMO

This study prepared dumbbell-shaped titanium dioxide (TiO2)/gold nanorods (AuNRs) coated with mesoporous silica shells (mS) (AuNRs-TiO2@mS). Methotrexate (MTX) was further loaded into the AuNRs-TiO2@mS, and then upconversion nanoparticles (UCNPs) were decorated to form AuNRs-TiO2@mS-MTX: UCNP nanocomposites. TiO2 is used as an intense photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS), leading to photodynamic therapy (PDT). Concurrently, AuNRs exhibited intense photothermal therapy (PTT) effects and photothermal conversion efficiency. In vitro results suggested that these nanocomposites can kill oral cancer cells (HSC-3) without toxicity through irradiation of NIR laser, owing to the synergistic effect. The in vivo studies indicated that these nanocomposites exhibited excellent antitumor effects through synergistic PDT/PTT/chemotherapy under a near-infrared (NIR) 808 nm laser irradiation. Thus, these AuNRs-TiO2@mS: UCNP nanocomposites have great potential to undergo deep tissue penetration with enhanced synergistic effects through NIR-triggered light for cancer treatment.


Assuntos
Nanopartículas , Nanotubos , Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Metotrexato/farmacologia , Dióxido de Silício , Ouro/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanotubos/efeitos da radiação , Neoplasias/tratamento farmacológico
6.
Nanomedicine ; 50: 102673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37044193

RESUMO

Herein, we fabricated gold surface-coated iron titanium core-shell (FeTi@Au) nanoparticles (NPs) with conjugation of angiopep-2 (ANG) (FeTi@Au-ANG) NPs for targeted delivery and improved NPs penetration by receptor-mediated endocytosis to achieve hyperthermic treatment of gliomas. The synthesized "core-shell" FeTi@Au-ANG NPs exhibited spherical in shape with around 16 nm particle size and increased temperature upon alternating magnetic field (AMF) stimulation, rendering them effective for localized hyperthermic therapy of cancer cells. Effective targeted delivery of FeTi@Au-ANG NPs was demonstrated in vitro by improved transport and cellular uptake, and increased apoptosis in glioma cells (C6) compared with normal fibroblast cells (L929). FeTi@Au-ANG NPs exhibited higher deposition in brain tissues and a superior therapeutic effect in an orthotopic intracranial xenograft mouse model. Taken together, our data indicate that FeTi@Au-ANG NPs hold significant promise as a targeted delivery strategy for glioma treatment using hyperthermia.


Assuntos
Glioma , Hipertermia Induzida , Nanopartículas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Ouro/uso terapêutico
7.
Nanoscale ; 14(39): 14789-14800, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36184995

RESUMO

The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas de Magnetita , Nanopartículas , Ligas , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Glioma/terapia , Humanos , Ligantes , Lipoproteínas LDL , Peptídeos , Nanomedicina Teranóstica , Titânio/farmacologia
8.
Front Bioeng Biotechnol ; 10: 818137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223788

RESUMO

The main causes for failure in implant surgery are prolonged exposure of implants or wound and tissue ischemia. Bacterial infection caused by the surrounding medical environment and equipment is also a major risk factor. The medical risk would be greatly reduced if we could develop an implant coating to guide tissue growth and promote antibacterial activity. Mesoporous bioactive glasses are mainly silicates with good osteoinductivity and have been used in medical dentistry and orthopedics for several decades. Strontium ions and silver ions could plausibly be incorporated into bioactive glass to achieve the required function. Strontium ions are trace elements in human bone that have been proposed to promote osseointegration and angiogenesis. Silver ions can cause bacterial apoptosis through surface charge imbalance after bonding to the cell membrane. In this study, functional polyelectrolyte multilayer (PEM) coatings were adhered to 316L stainless steel (SS) by spin coating. The multilayer film was composed of biocompatible and biodegradable collagen as a positively charged layer, γ-polyglutamic acid (γ-PGA) as a negatively charged layer. Chitosan was incorporated to the 11th positively charged layer as a stabilizing barrier. Spray pyrolysis prepared mesoporous bioactive glass incorporated with silver and strontium (AgSrMBG) was added to each negatively charged layer. The PEM/AgSrMBG coating was well hydrophilic with a contact angle of 37.09°, hardness of 0.29 ± 0.09 GPa, Young's modulus of 5.35 ± 1.55 GPa, and roughness of 374.78 ± 22.27 nm, as observed through nano-indention and white light interferometry. The coating's antibacterial activity was sustained for 1 month through the inhibition zone test, and was biocompatible with rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), as observed in the MTT assay. There was more hydroxyapatite precipitation on the PEM/AgSrMBG surface after being soaked in simulated body fluid (SBF), as observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In both in vitro and in vivo tests, the PEM/AgSrMBG coating promoted angiogenesis, osseointegration, and antibacterial activity due to the sustained release of silver and strontium ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA